Spatial Partitioning of Police Districts: a Multi-Criteria Model

M. Camacho-Collados, F. Liberatore

Introduction

Background and motivation

What is this talk about

Rationale

- Objectives of **Police Departments**:
 - 1. Improving the effectiveness of patrolling operations.
 - 2. Increasing the efficiency in the use of scarce resources.

Possible Solution:

Implementing a **Predictive Patrolling Policy**

Context

- In Spain, the security of towns is responsibility of the Spanish National Police Corps (SNPC)
- A strong crisis has reduced the number of police officers and resources available to the SNPC
- The distribution of patrols is done by the inspectors.
 - They locate the agents according to neighborhood borders defined more than 50 years ago.

Districting Problem

- Grouping elementary units (or atoms) of a given territory into larger districts (or clusters), according to relevant attribut
- Applied to:

- Definition of electoral areas
 Sales and service districting
- Social facilities districting
- Emergency service districting

The Police Districting Problem (PDP)

- Variation of Districting Problem.
- Specifically tailored to the needs of police agencies.
- Generally considers the following attributes:
 Number of emergency calls
 Response time to the calls
 A measure of the workload

PDP Related Work

- Mitchell (1972) proposes a clustering heuristic for the redesign of patrol beats in Anaheim, California.
 - He considers the total expected weighted distance to incidents, as well as a workload measure defined as the sum of the expected service time and the expected travel time.
- Bodily (1978) adopts a utility theory model that incorporates the preferences of three interest groups, namely, the citizens, the administrators, and the service personnel.

PDP Related Work

- Benveniste (1985) is the first author to include workload equalization in the optimization process.
- The model by D'Amico et al. (2002) calculates sectors' workload by calling an external software, PCAM, that defines the optimal number of agents in a particular shift.
- Zhang and Brown (2013) propose a heuristic algorithm for the generation of districting, evaluated

Predictive Patrolling

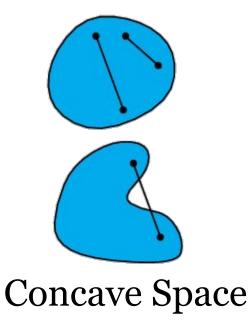
• "**Predictive policing** refers to any policing strategy or tactic that develops and uses information and advanced analysis to inform forward-thinking crime prevention", Dr. John Morgan, NIJ Symposyum

Predictive Policing + Police Districting
 Problem = Predictive Patrolling

- Focus resources where needed.
- Adapts to the idiosyncrasies of a specific shift.
- Change of paradigm: from detention to
 prevention

Problem Formulation

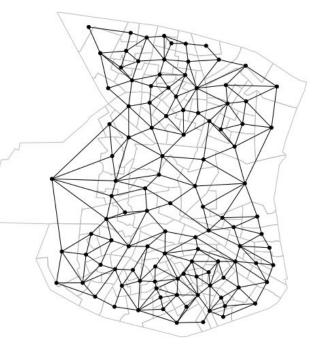
A Multi-Criteria Police Districting Problem


- Goal of the model:
 - To **partition** into patrol sectors the territory under the jurisdiction of a district, in the best possible way.
 - Find a balance between efficiency and workload distribution.
 - Patrol sectors must be connected and convex.

Connectivity and Convexity

Connected Space

Disconnected Space **Convex Space**



Characteristics of a «good» territory partition

- Compact areas
 - Better control of the territory
 - Faster response of agents
- Homogeneity in terms of workload
 - More efficient distribution of work
 - Equality increases satisfaction of agents
- Mutual support
 - Desirable in case of need or emergency

Input Data

- Graph *G(N,E)*
- N set of nodes, indexed by *i* and
- *E* set of edges, indexed by *(i,j)*
- **r**_i, crime risk at node **i**
- $\dot{a_i}$, area to be patrolled at node
- *l*_{*ij*}, length of edge *(i,j)*

- *p*, number of patrolling sectors
- w, decision-maker preference weights
- λ , balance coefficient

Sector Attributes - 1

- Area
 - *a^s* This attribute identifies the size of the territory that an agent should patrol.
- Support Received
 - b^s Two sectors support each other if the distance between their geometric medians is less than or equal to a defined constant, K.
- Crime Risk
 - c^s The demand is defined as the total risk of the sector, i.e., the sum of the risk associated to the cells belonging to the sector.
- Diameter
 - *d^s* The diameter of a sector is defined as the maximum distance between any pair of cells belonging to it.

Attributes - 2

- Used to define criteria
- Decision-maker can specify preference among the criteria by using weights, w

Patrol sector's workload: $W^{s} = w_{a} a^{s} + w_{b} b^{s} + w_{c} c^{s} + w_{d} d^{s}$

Objective Function

$$obj(P) = \lambda \cdot \max\{W^s\} + (1-\lambda) \cdot \sum_{s \in P} \frac{W^s}{p}$$

 $0 \le \lambda \le 1$, the model gives a range from optimization ($\lambda = 0$) to balance ($\lambda = 1$).

$$obj(P) = \lambda \cdot \max\left\{W^s\right\} + (1-\lambda) \sum_{s \in P} \frac{W^s}{p}$$

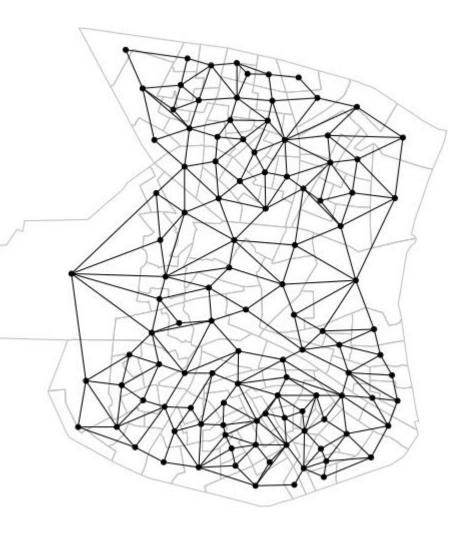
Problem Formulation

 $\begin{array}{ll} \min obj(P) \\ s.t. & \varnothing \notin P \\ & \bigcup_{s \in P} s = N \\ r \cap s = \varnothing & \forall s, r \in P \mid s \neq r \\ & |P| = p \\ Conn(s) = 1 & \forall s \in P \\ Conv(s) = 1 & \forall s \in P \end{array}$

Solving the MC-PDP

- Heuristic approach: Multi-start Tabu Search algorithm initialized by a randomized Greedy algorithm.
 - Starts with a reasonably good solution generated randomly.
 - Iteratively improves the solution by perturbing the partition to find better configurations.
- Methodology capable of generating in just one minute patrolling configurations that are more efficient than those currently adopted by the SNPC.

Madrid : Central District


Case Study

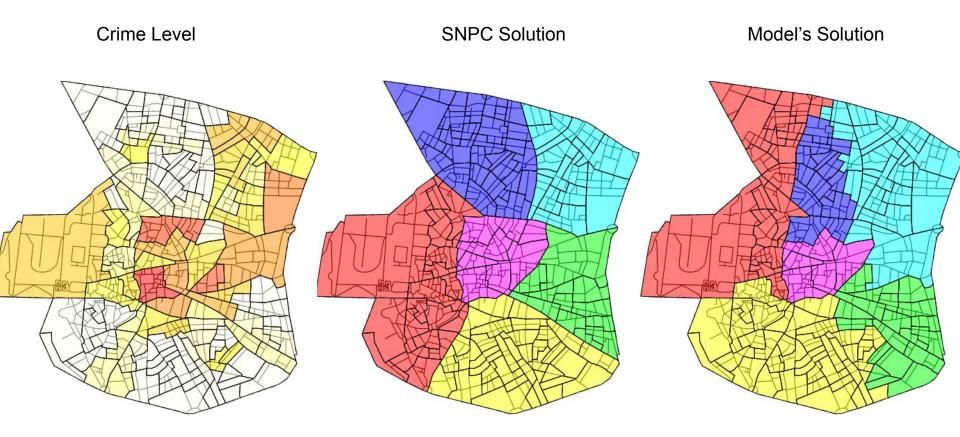
- Madrid Central District population is approximately 150,000 people, 26.87% of which are immigrants. Very heterogeneous.
- High transient population that commute to this district for reasons of work, sightseeing or leisure.
- 30% of all the crimes in Spain happen here.

Dataset

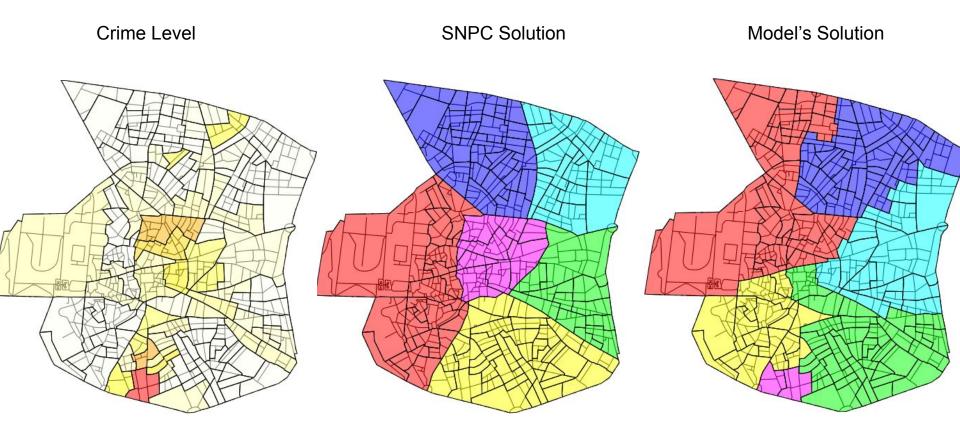
- 111 nodes corresponding to census districts
- 276 edges
- a_i: total length of roads
 l_{ij}: great-circle distance of census districts'

centers

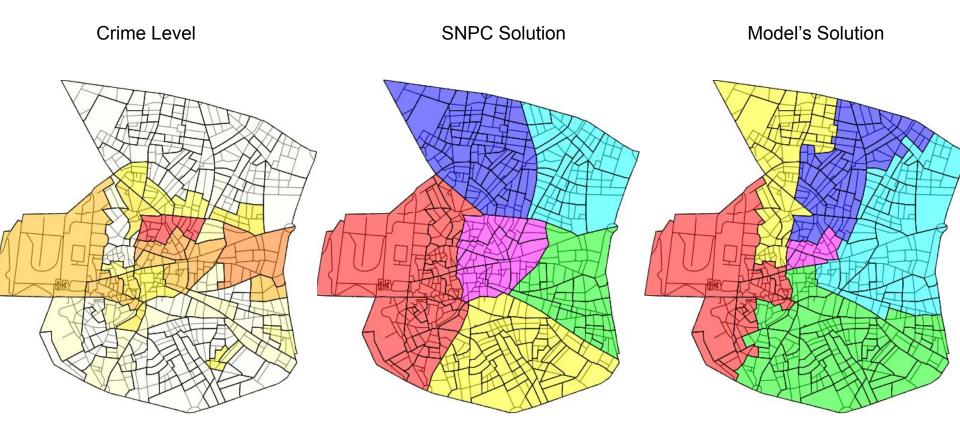
Preference Weights and Balance Coefficient


Parameters provided by service coordinator: $\mathbf{w} = (0.45, 0.05, 0.45, 0.05)$ $\lambda = 0.1$

 r_i : theft committed in three shifts Saturday 10/13/12, night shift Sunday 10/13/12, morning shift Monday 10/14/12, afternoon shift


Experiments

- We have run each configuration 50 times and computed the 95% confidence intervals
- Computational time: 60 seconds
- We compared the solutions found by our approach to the configuration currently adopted by the SNPC.


Saturday Night Shift

Sunday Morning Shift

Monday Afternoon Shift

RESULTS

Shift	# of Patrol Sectors	SNPC Solution	MCPDP Solution	Improvement
Saturday Night	2	0.56	0.49	12.5%
Saturday Night	6	0.20	0.19	5%
Sunday Morning	2	0.56	0.49	12.5%
Sunday Morning	6	0.21	0.19	9.52%
Monday Afternoon	2	0.55	0.49	10.91%
Monday Afternoon	6	0.21	0.18	9.52%

Conclusions

Conclusions

 Empirical tests show that the algorithm generates rapidly patrolling configurations that are more efficient than those devised by professionals, in the case study considered.

Future Research Topics

- Effectiveness of other heuristic and metaheuristic algorithms, such as ant colonies and genetic algorithms.
- Design of **optimal algorithms**, possibly based on decomposition (e.g., column generation)
- Other problems:
 - Objective evaluation of the agents.
 - Determination of the optimal number of agents required in a shift.

THANK YOU!!!

Bibliography

M. Camacho-Collados, F. Liberatore, J.M. Angulo, "A multi-criteria police districting problem for the efficient and effective design of patrol sectors," European *Journal of Operations Research*, 246(2): 674-684, 2015.

M. Camacho-Collados, F. Liberatore, A Decision "Support System for predictive police patrolling," *Decision Support Systems*, 75:25-37, 2015.