

Juegos Cooperativos como herramienta para problemas de reparto de costes en ambiente de incertidumbre: información parcial sobre la ocurrencia de los escenarios

Borrero, D.V.¹, Hinojosa, M.A.¹, Mármol, A.M.²

¹ Universidad Pablo de Olavide, ² Universidad de Sevilla.

1. Juego cooperativo multiescenario

PROBLEMA: Repercusión del coste total de un servicio de reparto o recogida (recogida de basura, lanzadera al aeropuerto, reparto de comercios, servicio a domicilio, etc.) cuando hay varias posibilidades con el mismo coste para realizar el servicio (diferentes escenarios) y no se sabe cual será el escenario que finalmente ocurrirá.

Juego de reparto de costes en ambiente multiescenario, (N, c, E):

- $N = \{1, ..., n\}$ conjunto de jugadores
- E coste total a repartir entre los jugadores
- c función característica:
 - a cada $S \subset N$, asocia un vector $\mathbf{c}(S) \in \mathbb{R}_+^m$
 - $-c_j(\emptyset) = 0$ y $c_j(N) = E$, $\forall j = 1, ..., m$

Las componentes de $\mathbf{c}(S) \in \mathbb{R}^m$ representan el coste que la coliación S puede obtener por sí misma en cada uno de los m escenarios.

REPARTO: $x \in \mathbb{R}^n$ con $x_i \ge 0$, $\forall i \in \mathbb{N}$, que verifica $\sum_{i \in \mathbb{N}} x_i = E$

Conjunto de repartos del juego: $I^*(N, \mathbf{c}, E)$

NOTACIÓN: $x(S) = \sum_{i \in S} x_i$

2. Núcleo: Conjunto de repartos estables

• Las probabilidades de ocurrencia de los escenarios son conocidas ($\lambda \in \mathbb{R}^m$):

El juego ponderado escalar es (N, c^{λ}) con $c^{\lambda}(S) = \lambda^t \mathbf{c}(S) = \sum_{j=1}^m \lambda_j c_j(S)$

Núcleo del juego escalar: $C(N, c^{\lambda}) = \{x \in I^*(N, c^{\lambda}) \mid x(S) \leq c^{\lambda}(S), \forall S \subset N\}$

• Hay información incompleta sobre las probabilidades de ocurrencia de los escenarios mediante un sistema de desigualdades lineales que definen el subconjunto poliédrico $\Lambda \subseteq \Delta^{m-1} = \{\lambda \in \mathbb{R}^m \mid \lambda_i \geq 0, \sum_{j=1}^m \lambda_j = 1\}$

Ejemplo: $\Lambda = \{\lambda \in \Delta^{m-1} \mid \lambda_1 \geq \lambda_2 \geq ... \geq \lambda_m \geq 0\}.$

Dado un juego (N, \mathbf{c}, E) y un poliedro de información $\Lambda \subseteq \Delta^{m-1}$:

Núcleos con información parcial:

Núcleo de Preferencia

 $PC_{\Lambda}(N, \mathbf{c}, E) = \{x \in I^*(N, \mathbf{c}, E) \mid x(S) \le c^{\lambda}(S), \forall \lambda \in \Lambda, \forall S \subset N\}$

Núcleo Común

 $CC_{\Lambda}(N, \mathbf{c}, E) = \{x \in I^*(N, \mathbf{c}, E) \mid \exists \lambda \in \Lambda, x(S) \leq c^{\lambda}(S), \forall S \subset N\}$

Núcleo de Dominancia

 $DC_{\Lambda}(N, \mathbf{c}, E) = \{x \in I^*(N, \mathbf{c}, E) \mid \text{ for each } S \subset N, \exists \lambda \in \Lambda, x(S) \leq c^{\lambda}(S)\}$

3. Resultados

 $PC(N, \mathbf{c}, E) = \bigcap_{n=0}^{\infty} C(N, c^{\lambda})$

 $CC(N, \mathbf{c}, E) = \bigcup_{\lambda \in \Delta^{m-1}} C(N, c^{\lambda})$

Dados dos poliedros de información parcial Λ , $\Lambda' \subseteq \Delta^{m-1}$, tales que $\Lambda \subset \Lambda'$,

 $PC_{\Lambda}(N, \mathbf{c}, E) \subseteq CC_{\Lambda}(N, \mathbf{c}, E) \subseteq DC_{\Lambda}(N, \mathbf{c}, E)$ $\cup \cup \cap \cup \cap \cup \cap \cup$ $PC_{\Lambda'}(N, \mathbf{c}, E) \subseteq CC_{\Lambda'}(N, \mathbf{c}, E) \subseteq DC_{\Lambda'}(N, \mathbf{c}, E)$

Las inclusiones pueden ser estrictas.

4. Obtención de los repartos estables

Dado un juego (N, \mathbf{c}, E) e información parcial $\Lambda \subseteq \Delta^{m-1}$, el **juego transformado** es (N, c^{Λ}, E) , tal que

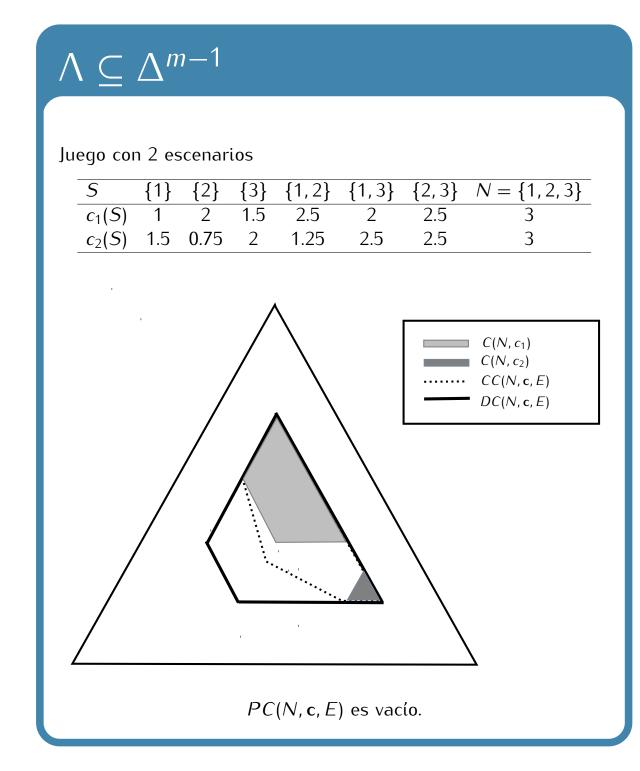
 $c^{\Lambda}(S) = M_{\Lambda}^t \mathbf{c}(S) \in \mathbb{R}^r$, para cada $S \subseteq N$,

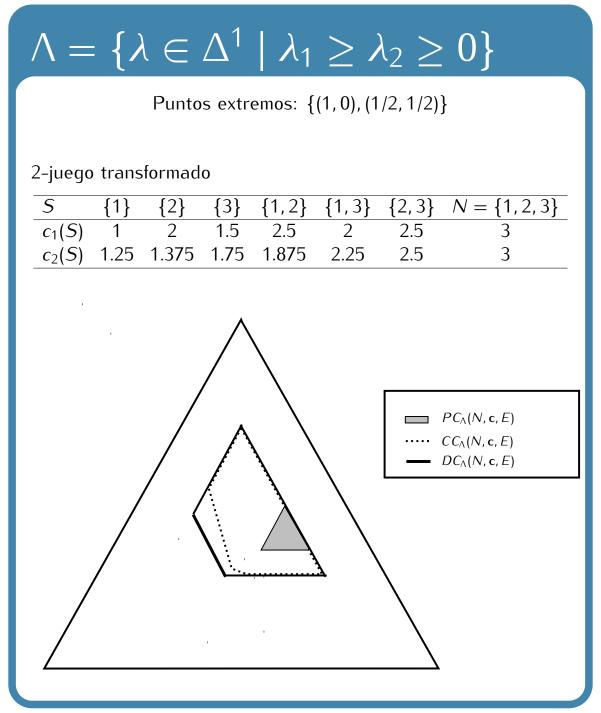
con $M_{\Lambda} \in \mathbb{R}^{m \times r}$ la matriz cuyas columnas son los r puntos extremos de Λ .

 $PC_{\Lambda}(N, \mathbf{c}, E) = PC(N, c^{\Lambda}, E)$ $DC_{\Lambda}(N, \mathbf{c}, E) = DC(N, c^{\Lambda}, E)$

 $CC_{\Lambda}(N, \mathbf{c}, E) = CC(N, c^{\Lambda}, E)$

EJEMPLO:





5. Referencias

- Borrero, D.V., Hinojosa, M.A., Mármol, A.M. (2016). Stable solutions for multiple scenario cost allocation games with partial information. *Annals of Operations Research*, 245, 209–226.
 - Hinojosa, M.A., Mármol, A.M. and Thomas, L.C. (2005). Core, least core and nucleolus for multiple scenario cooperative games. *European Journal of Operational Research*, 164, 225–238.
- Mármol, A.M., Puerto, J., Fernández, J.R. (2002). Sequential incorporation of imprecise information in multiple criteria decision processes. *European Journal of Operational Research*, 137, 123–133.