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Abstract:  One  of  the main  differences  between  the  traditional  and  the  Behavioral 
approaches to decision making is that the latter has not yet been captured in a unifying 
framework. This hampers in a certain way the whole research program and poses the 
question of whether this competing approach can provide an encompassing alternative 
to the classical one. We analyze this issue in the light of the problem of reconstructing 
global choices of an agent up from the solutions found for local problems. We show that 
a representation based on category theory of the conditions for such reconstruction is 
general  and  robust  enough  to  represent  both  the  case  in which  problems  are  non‐
contextual  and  local  as well  as  that,  usual  in  the  literature  on  Behavioral  decision 
making, in which such properties do not hold. In the first case, we show that a sheaf‐
theoretical representation provides an abstract characterization of the global solution. 
In  the  latter  case, we  show  that  locality  and  contextuality  generate  an  obstruction 
towards the reconstruction of global solutions, yielding a possible clue for the intrinsic 
difference between Behavioral and classical decision theory. 
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Outline of the Paper

Decision making: local problems and global solutions.

Sheaves and the reconstruction of global solutions.

Behavioral economics: non-locality and contextuality.

Obstructions and a possibility condition.
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Local problems

Consider a family of local problems each with its own domain, say Di

and each with a problem-specific function ui .

Hypothesis: there exist a global function U over D (Di ⊆ D for each
problem).

We look for a function V such that u = V|D . Furthermore, V should
yield the same global solution as U.

To obtain V , which recovers the hypothetical U, we must be able to
patch together the local restrictions in a consistent way.

Local vs. Global August/15 3 / 44



A localization operator Loc reduces the global maximization problem to a
sequence of local ones:
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Main result

It is entirely possible that there might not be any global U such that
each u is its restriction to the corresponding domain.

Only if non-contextuality and locality are properties of the
decision-making process is it possible to obtain a global result via the
patching-up of local solutions.
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Decision-making: local vs. global

Let L be a space of possible options that an agent may select.

Each x ∈ L is evaluated by means of a utility function, U : L → <.

Given a family of constraints limiting the set of options for the agent
to L̂ ⊆ L, the goal of the agent is to find some x∗ that maximizes U
over L̂.
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Decision-making: local vs. global

Consider a family {Lk}κ
k=0 of closed linear subspaces of L.

Let us define

Projk : L →
κ⋃

k=0

Lk

such that Projk(x) = xk ∈ Lk , where xk is the projection of x on Lk .

The projection of a global solution x∗ onto Lk will return the point in
Lk which is the closest to x∗.
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Decision-making: local vs. global

In case the projection does not return a local solution, however, we
can still define an operator, which we call Γk(x) that formalizes the
idea of “best choice” within a local problem.

To analyze this problem, let us define a new correspondence,
Γk : L̂→ L̂k :

Γk(x) = {xk ∈ X̂k : xk ∈ argminy∈X̂k |y − Projk(x)|}.
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Local vs. global, Math with bad drawings-style
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Decision-making: local vs. global

We are interested in the set given by Γk(x
∗). In the following diagram x∗

is the global maximum for U, whereas x̂k is a local solution (maybe not
unique) for the k-restricted problem.
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Example

Consider L to be R3 (the three-dimensional real Euclidean space) and the
utility function:

U(x , y , z) = 3− 2x2 − y2 − 3z2

to be maximized over L.
This yields a single global solution

X̂ = {(0, 0, 0)}.

We will consider two possible “local” problems.
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Example

L1 = {(x , y , z) : z = 0}, where

u1(x , y , z) = U|L1 = 3− 2x2 − y2

to be maximized over

L̂1 = {(x , y , 0) ∈ L1 : x2 + y2 = 1},

the unit circumference in L1.
The class of solutions for this problem is

X̂1 = {(0, 1, 0), (0,−1, 0)}.
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Example

L2 = {(x , y , z) : (x , y , z) · (1,−1, 1) = 0}

(i.e. the linear subspace with normal vector (1,−1, 1)), where

u2(x , y , z) = 3− 3x2 − 4z2 − 2xz ,

is the restriction of U on L2, to be maximized over

L̂2 = {(x , y , z) : 2x2 + 2z2 + 2xz = 1},

the intersection of the surface of the unit sphere in R3 with L2.
Here the solution set is:
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Example

It is easy to see that each solution of problem 1 minimizes the distance to
the projection of the single global solution (0, 0, 0) on L1. More precisely

Γ1(0, 0, 0) = X̂1.

The same is true for problem 2, since all points in L2 are at a Euclidean
distance 1 from the global solution. So, in particular, the elements in X̂2

minimize the distance to the projection of (0, 0, 0) on L2 and thus,

Γ2(0, 0, 0) = X̂2
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The category of local problems

Definition

A local problem is sk = 〈L̂k , uk , X̂k〉. It involves the maximization of a
continuous utility function uk over a compact set L̂k ⊆ Lk . This in turn
yields a non-empty family of solutions

X̂k = {x̂ : uk(x̂) ≥ uk(x) for every x ∈ L̂k}.
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The category of local problems

Definition

Let PR be the category of local problems, where

Obj(PR) is the class of objects. Each one is a problem sk .

a morphism ρkj : sk → s j exists if two conditions are fulfilled:

L̂k ⊆ L̂j , uk = uj |Lk and
dim(Lk ) ≤ dim(Lj ).

Given two morphisms ρkj : sk → s j and ρjl : s j → s l there exists their
composition ρjl ◦ ρkl = ρkl .
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The sheaf of local problems

We can also define P(L) as the category in which the objects are
subsets of L and a morphism between two objects fAB : A→ B is
defined as A ⊆ B.

We can now define a functor

Σ : PR −→ P(L)

which assigns to a problem sk the subset Σ(sk) ⊆ L:

Σ(sk) = {y ∈ L | Γk(y) ∈ X̂k}
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The sheaf of local problems
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The sheaf of local problems

A section σk over sk is simply the assignment of the elements of
Σ(sk) to sk :

σk : sk 7→ Σ(sk).

Given two problems, sk and s j , let us write sk / s j iff sk is a
restriction of s j .

Finally, given sk / s j let us define r jk , assigning to section Σ(s j ) the
section corresponding to its sub-problem sk .
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The sheaf of local problems
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The sheaf of local problems

Σ, so defined is a presheaf (i.e. a contravariant functor between PR
and P(L)).

A family {sk}k∈K ⊆ Obj(PR) is said to be a cover of problem s j if
sk / s j for each k ∈ K and L̂j ⊆ ∪k∈K L̂k .

The family of sections {σk}k∈K is said to be compatible if for any
pair k , l ∈ K , if Σ(sk) = X k and Σ(s l ) = X l ,

Γk(X
k) ∩ Γl (X

k) = Γk(X
l ) ∩ Γl (X

l )
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The sheaf of local problems

L
Xk = Σ(sk) Xl = Σ(sl)
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The sheaf of local problems

Given a cover {sk}k∈K of a problem s j with compatible sections, Σ is
then sheaf if there exists a unique σj = Σ(s j ) such that for each
k ∈ K ,

σk = σj ∩ Γ−1k (L̂k)

Intuitively, Σ is a sheaf if σj in fact “glues” together all the
assignments σk in P(L).
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The sheaf of local problems
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Example

Consider the problems 1 and 2 from the previous example, denoted
s i = 〈L̂i , ui , X̂i 〉 for i = 1, 2 as well as a new problem s0, which is the
optimization of U over the surface of the three-dimensional sphere
L̂0 = {(x , y , z) : x2 + y2 + z2 = 1} and thus,

X̂0 = {(0, 1, 0), (0,−1, 0)}.
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Example

We define Σ : PR → P(L), summarized by the following table (each row
being a section σi , i = 0, 1, 2):

Problems a1 b1 a2 b2

s1 X − X −

s2 − X − X

s0 X − X −

The range of Σ is based only of four elements in L, a1, a2 and b1, b2 which
are the R3 solutions of problems s0 and s1, respectively.
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Example

It is easy to check that s i / s0 for i = 1, 2. On the other hand, Σ(s0)
restricted to each s i yields Σ(s i ).

{σ1, σ2} is a compatible family of sections.

Notice that L̂1 ∩ L̂2 does not include the solutions to either problem.
But then the projections of either X̂1, X̂2 on L̂1 ∩ L̂2 are both ∅, and
thus the sections satisfy, trivially, the compatibility condition.

These arguments indicate that Σ satisfies the sheaf condition.
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Generalizing the concept of problem

Definition

Let GPR be the category of generalized local problems, where

Obj(GPR) is the class of objects. Each one, sk = 〈L̂k , uk , X̃k〉 is
such that L̂k and uk are defined as in PR. But X̃k ⊆ L̂k is the class
of elements in L̂k that yield the “highest value” for the agent.

a morphism ρkj : sk → s j is defined exactly in the same way as
morphisms in PR.
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Generalizing the concept of problem

The only difference between GPR and PR is the (admittedly vague)
concept of “highest value”.

If this understood as achieving the maximum of uk we have that
X̃k = X̂k and GPR becomes the same as PR.

Behavioral Economics is then absorbed smoothly into the
mathematical framework.

What is salient then for present purposes are those situations where
GPR in fact diverges from PR.
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Example

Consider two problems s1, s2, with L1 = R = L2. Suppose that
u1 = u = u2 (with u a strictly concave function) and that ω1 ∈ R is
understood as the money owned in s1, while ω2 ∈ R is owned in s2.
Furthermore, L̂1 = {x ∈ R : u(ω1 + x) = u(ω2)} and
L̂2 = {x ∈ R : u(ω2 − x) = u(ω1}. Suppose that in both cases we look
for the “best” x.

If “best” means the maximization of uk over L̂k ,

X̃1 = {ω2 −ω1} = X̃2.

On the other hand, according to Prospect Theory
(Kahneman-Tversky), “best” in s1 means maximizing psychological
gain with respect to a reference point (owning ω1), while in s2 it
means minimizing psychological loss (down from ω2). Thus

X̃1 6= X̃2.
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Example

Consider a sequence of problems s1, s2, . . . , sK with Lk = L and
uk = u for k = 1, . . . ,K and ∩Kk=1L̂

k 6= ∅.

According to Case-based Decision Theory (Gilboa-Schmeidler) we can
build a memory of cases M = {(sk , xk) : xk ∈ X̃k , k = 1, . . . ,K − 1}.
That is, a record of the problems and one element chosen for yielding
the highest value in those problems.

Furthermore, a similarity function
sim: {sk}k=1,...K × {sk}k=1,...K → R, provides a closeness relation
between problems.
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Example

Then at problem sK we will have

X̃K = {x : x ∈ argmaxy∈L̂K ∑
(sk ,y )

sim(sk , sK )uk(y)}

i.e. X̃K consists of the elements in ∪K−1k=1 X̃
k ∩ L̂K that maximize the

weighted (by similarity) sum of local utility functions of the previously
solved problems.

But then, if problem sK is solved after an alternative sequence
s1′, . . . , s(K−1)′ (with a different memory M ′ and with different
similarity weights with respect to sK ), we might end with a set X̃K

different from the one found with the sequence s1, . . . , s(K−1).
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Contextuality and non-locality

The prospect theory example exhibits a dependence on context, while
the CBDM one involves the non-locality of solutions.

These features imply, in our setting, that Σ : GPR → P(L) does not
necessarily have to be a sheaf.

Given a problem s, the sheaf condition implies that its solution
remains independent of other solutions and thus it disregards their
contextual relevance. Analogously, if we consider two sequences
s1, . . . , sn and s1′, . . . , sn

′
in Obj(GPR), such that sn=s= sn

′
,

understood as two different paths (of problems previously solved).

Thus, the sheaf condition implies that the solution to s is
independent of the path followed. That is, the solution is purely local.
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Contextuality and non-locality

Proposition

If for every sk in GPR we have that:

The elements in X̃k are the maximizers of uk .

uk is the constraint of a single function (U) over Lk .

Then Σ : GPR → P(L) is a sheaf.
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Contextuality and non-locality

To establish this claim we start by defining a functor
Λ : P(L)→ GPR.

For any X ∈ P(L):

Λ(X ) = {sk = 〈L̂k , uk , X̃k〉 ∈ Obj(GPR) : X = Γ−1k (X̃k)}

That is, given X ⊆ L, Λ yields the problems that have as solutions
the projections of X .
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Contextuality and non-locality
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Contextuality and non-locality

Proposition

For any s ∈ Obj(GPR), s ∈ Λ(Σ(s)).

and

Proposition

If
⋃

k∈K Γ−1k (X̃k) = X̃ then Λ(Σ(s)) ⊆ {s}.
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Contextuality and non-locality
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Contextuality and non-locality
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Contextuality and non-locality

Under the conditions of the last Proposition, Λ can be seen as a fiber
bundle.
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Contextuality and non-locality
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Contextuality and non-locality

This means that, on every problem s, Λ−1 is isomorphic to s × Bs ,
where Bs is a fiber.

In the particular case that Bs = Bs
′ for any pair of problems s, s

′
, Λ

is said to be a trivial bundle.

Λ is trivial if given the global problem s = 〈L,U, X̃ 〉 and any problem sk

in GPR we have that:

λ : Λ−1(sk)→ sk × Σ(s)

is an isomorphism.
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Contextuality and non-locality

Proposition

If for every sk = 〈L̂k , uk , X̃k〉 in GPR, Λ(Σ(sk)) = {sk} then Λ is
trivial iff there exists U : L → <, such that uj has the same optimal
points as U|Lj .
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Contextuality and non-locality
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